Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2005 Jan;4(1):35-43. Epub 2004 Nov 23.

Proteome analysis of the human mitotic spindle.

Author information

  • 1Max Planck Institute of Biochemistry, Department of Cell Biology, D-82152 Martinsried, Germany.

Abstract

The accurate distribution of sister chromatids during cell division is crucial for the generation of two cells with the same complement of genetic information. A highly dynamic microtubule-based structure, the mitotic spindle, carries out the physical separation of the chromosomes to opposite poles of the cells and, moreover, determines the cell division cleavage plane. In animal cells, the spindle comprises microtubules that radiate from the microtubule organizing centers, the centrosomes, and interact with kinetochores on the chromosomes. Malfunctioning of the spindle can lead to chromosome missegregation and hence result in aneuploidy, a hallmark of most human cancers. Despite major progress in deciphering the temporal and spatial regulation of the mitotic spindle, its composition and function are not fully understood. A more complete inventory of spindle components would therefore constitute an important advance. Here we describe the purification of human mitotic spindles and their analysis by MS/MS. We identified 151 proteins previously known to associate with the spindle apparatus, centrosomes, and/or kinetochores and 644 other proteins, including 154 uncharacterized components that did not show obvious homologies to known proteins and did not contain motifs indicative of a particular localization. Of these uncharacterized proteins, 17 were tagged and localized in transfected mitotic cells, resulting in the identification of six genuine spindle components (KIAA0008, CdcA8, KIAA1187, FLJ12649, FLJ90806, and C20Orf129). This study illustrates the strength of a proteomic approach for the analysis of isolated human spindles and identifies several novel spindle components for future functional studies.

PMID:
15561729
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk