Send to:

Choose Destination
See comment in PubMed Commons below
Schizophr Res. 2005 Jan 1;72(2-3):259-66.

Association of plasma apolipoproteins D with RBC membrane arachidonic acid levels in schizophrenia.

Author information

  • 1Neurochemistry and Psychopharmacology Laboratory (Bldg. 13), VA Pittsburgh Healthcare System, 7180 Highland Dr., Pittsburgh, PA 15206, USA.


Apolipoprotein D (apoD) is a member of the lipocalin superfamily of transporter proteins that bind small hydrophobic molecules, including arachidonic acid (AA). The ability of apoD to bind AA implicates it in pathways associated with membrane phospholipid signal transduction and metabolism. Recent findings of an increased expression of apoD in the mouse brain after clozapine treatment suggested a role for apoD in the pharmacological action of clozapine. Moreover, clozapine has been shown to increase membrane AA levels in RBC phospholipids from schizophrenic patients. ApoD levels have also been shown to be elevated in the CNS of subjects with chronic schizophrenia, a disorder associated with AA dysfunction. In this study, we examined whether plasma apoD levels are related to red blood cell membrane AA contents in the first-episode neuroleptic-naive schizophrenic (FENNS) patients. Plasma apoD levels as measured by enzyme-linked immunosorbent assay (ELISA) were not significantly different (F = 0.51, df = 2,86, p = 0.60) among healthy controls (n = 36), FENNS patients (n = 33) and patients with other psychiatric disorders (n = 19). However, plasma apoD levels were significantly correlated with RBC-AA (p = 0.0022) and docosapentaenoic acid (p = 0.0008) in FENNS patients. There are several known mechanisms that can lead to the type of membrane fatty acid defects that have been identified in schizophrenia. Whether plasma apoD alone is a major determinant of reduced RBC membrane AA levels in FENNS patients remains to be determined, although these preliminary data appear not to support this premise. Taken together with other in vitro studies, however, the present data support the view that an increased expression of apoD such as induced by atypical neuroleptic drug, may facilitate incorporation of AA into membrane phospholipids by its selective binding to AA.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk