Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Oncogene. 2005 Jan 13;24(3):431-44.

A central domain of cyclin D1 mediates nuclear receptor corepressor activity.

Author information

  • 1Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA.

Abstract

Regulation of nuclear receptor activity is the focus of numerous ongoing studies to develop novel therapies for the treatment of hormone-related cancer. Although cyclin D1 functions to control the activity of several nuclear receptors, the region(s) of the protein responsible for such transcriptional comodulation remain poorly defined. Herein, we map the region of cyclin D1 required for binding and repression of the androgen receptor (AR) to a central, exclusively alpha-helical domain. Deletion of this domain disrupted AR binding and corepressor activity. Further investigations showed that this domain is sufficient for AR interaction and possesses the ability to bind histone deacetylase 3. Strikingly, overexpression of this repressor region attenuates cell cycle progression in prostatic adenocarcinoma cells. The requirement of this domain for nuclear receptor repression was conserved with respect to thyroid hormone receptor beta-1, whereas cyclin D1 activation of the estrogen receptor occurred independently of the central region. Together, these data identify a minimal repression module within cyclin D1 and demonstrate that the coactivator and corepressor functions of cyclin D1 are distinct. In addition, our data suggest that properties of the cyclin D1 central domain could be exploited to develop novel prostate cancer therapeutics.

PMID:
15558026
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk