Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pediatr Res. 2005 Jan;57(1):56-62. Epub 2004 Nov 19.

Mechanisms underlying reduced apoptosis in neonatal neutrophils.

Author information

  • 1Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08903, USA.

Abstract

Apoptosis, which leads to phagocytosis by mononuclear cells, represents the primary mechanism for removing neutrophils from inflamed tissues and minimizing injury. The present studies show that membrane phosphatidylserine turnover and permeability, as well as DNA fragmentation, were reduced in neutrophils from neonates when compared with adults. The activity of caspase 3 and expression of the proapoptotic proteins Bax, Bad, and Bak were also decreased in neonatal relative to adult neutrophils. These findings are consistent with impaired apoptosis in neonatal cells, which may contribute to prolonged inflammation in infants after oxidative stress or infection. Neutrophil apoptosis is induced by endogenous ligands such as Fas (FasL), which engage death receptors of the tumor necrosis factor/nerve growth factor superfamily, including Fas receptor (FasR). We found that expression of FasR was decreased in neonatal when compared with adult cells. Moreover, neonatal neutrophils did not undergo apoptosis in response to anti-FasR antibody and exhibited impaired chemotaxis to soluble FasL. However, in both adult and neonatal cells, p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase inhibitors blocked Fas-induced activity. These data suggest that prolonged survival of neonatal neutrophils at injured sites is due, in part, to reduced responsiveness to FasL. This may be related to decreased expression of both FasR and Bcl-2-family proteins that mediate neutrophil apoptosis.

PMID:
15557111
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk