Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2004 Nov 17;24(46):10384-92.

Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism.

Author information

  • 1Centre for Neuroendocrinology, Royal Free and University College Medical School, London NW3 2PF, United Kingdom.


Defects of either anosmin-1 or fibroblast growth factor receptor 1 (FGFR1) are known to underlie hereditary Kallmann's syndrome (KS), a human disorder of olfactory and gonadotropin-releasing hormone (GnRH) neuronal ontogeny. Here, we report a functional interaction between anosmin-1 and the FGFR1-FGF2-heparan sulfate complex, leading to amplified responses in the FGFR1 signaling pathway. In human embryonic GnRH olfactory neuroblasts, wild-type anosmin-1, but not proteins with loss-of-function KS mutations, induces neurite outgrowth and cytoskeletal rearrangements through FGFR1-dependent mechanisms involving p42/44 and p38 mitogen-activated protein kinases and Cdc42/Rac1 activation. Furthermore, anosmin-1 enhances FGF2 signaling specifically through FGFR1 IIIc in heterologous BaF3 lymphoid cells in a heparan sulfate-dependent manner. Our study provides compelling evidence for anosmin-1 as an isoform-specific co-ligand modulator of FGFR signaling that amplifies and specifies FGFR1 signaling responses during human nervous system development and defines a mechanism underlying the link between autosomal and X-linked KS.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk