Display Settings:

Format

Send to:

Choose Destination
Mol Cell Biol. 2004 Dec;24(23):10161-8.

Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2.

Author information

  • 1New York University Medical Center, SI 3-10, 540 First Ave., New York, NY 10016, USA.

Abstract

Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.

PMID:
15542827
[PubMed - indexed for MEDLINE]
PMCID:
PMC529034
Free PMC Article

Images from this publication.See all images (7)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk