Format

Send to:

Choose Destination
See comment in PubMed Commons below
Scand J Immunol. 2004 Nov;60(5):437-48.

Interferon-gamma mediates neuronal killing of intracellular bacteria.

Author information

  • 1Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Abstract

Neurons can be targets for microbes, which could kill the neurons. Just in reverse, we, in this study, report that bacteria can be killed when entering a neuron. Primary cultures of foetal mouse hippocampal neurons and a neuronal cell line derived from mouse hypothalamus were infected by Listeria monocytogenes. Treatment with interferon-gamma (IFN-gamma) did not affect bacterial uptake, but resulted in increased killing of intracellular bacteria, whereas the neuronal cell remained intact. The IFN-gamma-mediated bacterial killing was mapped to the neuronal cytosol, before listerial actin tail formation. Treatment with IFN-gamma induced phosphorylation of the transcription factor STAT-1 in neurons and IFN-gamma-mediated listerial killing was not observed in STAT-1(-/-) neurons or neurons treated with IFN regulatory factor-1 antisense oligonucleotides. IFN-gamma-treated neuronal cells showed increased levels of inducible nitric oxide synthase (iNOS) mRNA, and antisense iNOS oligonucleotides hampered the bacterial killing by neurons upon IFN-gamma treatment. This novel neuronal function - i.e., that of a microbe killer - could play a crucial role in the control of infections in the immuno-privileged nervous system.

PMID:
15541035
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk