Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2004 Nov 10;24(45):10117-27.

M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity.

Author information

  • 1Department of Physiology, University of Munich, D-80336 Munich, Germany.

Abstract

Muscarinic acetylcholine receptors are known to play key roles in facilitating cognitive processes. However, the specific roles of the individual muscarinic receptor subtypes (M1-M5) in learning and memory are not well understood at present. In the present study, we used wild-type (M2+/+) and M2 receptor-deficient (M2-/-) mice to examine the potential role of M2 receptors in learning and memory and hippocampal synaptic plasticity. M2-/- mice showed significant deficits in behavioral flexibility and working memory in the Barnes circular maze and the T-maze delayed alternation tests, respectively. The behavioral deficits of M2-/- mice were associated with profound changes in neuronal plasticity studied at the Schaffer-CA1 synapse of hippocampal slices. Strikingly, short-term potentiation (STP) was abolished, and long-term potentiation (LTP) was drastically reduced after high-frequency stimulation of M2-/- hippocampi. Treatment of M2-/- hippocampal slices with the GABA(A) receptor antagonist, bicuculline, restored STP and significantly increased LTP. Whole-cell recordings from CA1 pyramidal cells demonstrated a much stronger disinhibition of GABAergic than glutamatergic transmission in M2-/- hippocampi, which was particularly prominent during stimulus trains. Increased strength of GABAergic inhibition is thus a likely mechanism underlying the impaired synaptic plasticity observed with M2-/- hippocampi. Moreover, the persistent enhancement of excitatory synaptic transmission in CA1 pyramidal cells induced by the transient application of a low concentration of a muscarinic agonist (referred to as LTP(m)) was totally abolished in M2-/- mice. Because impaired muscarinic cholinergic neurotransmission is associated with Alzheimer's disease and normal aging processes, these findings should be of considerable therapeutic relevance.

PMID:
15537882
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk