Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscientist. 2004 Dec;10(6):566-74.

The synaptotagmins: calcium sensors for vesicular trafficking.

Author information

  • 1The Picower Center for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. motojiro@mit.edu

Abstract

The synaptotagmin family of vesicle proteins is believed to mediate calcium-dependent regulation of membrane trafficking. Detailed biochemical and in vivo studies of the most characterized isoform, synaptotagmin 1 (syt 1), have provided compelling evidence that it functions as a calcium sensor for fast neurotransmitter release at synapses. However, the function of the remaining isoforms is unclear, and multiple roles have been hypothesized for several of these. Recent evidence in Drosophila has given insight into the function of some of the remaining synaptotagmin family members. Of the five evolutionarily conserved isoforms in Drosophila, only two, syt 1 and syt 4, localize to most, if not all, synapses. The former is localized to presynaptic terminals, whereas the latter is predominantly postsynaptic. This suggests an intriguing possibility that syt 4 may mediate a postsynaptic vesicle trafficking pathway, providing a molecular basis for an evolutionarily conserved bidirectional vesicular trafficking communication system at synapses.

PMID:
15534041
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk