Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Colloid Interface Sci. 2004 Dec 15;280(2):442-8.

In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation.

Author information

  • 1Biomedical Engineering and Biomaterials Science Section, Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.

Abstract

The early stages of enamel surface dissolution (erosion) are of high scientific relevance; however, little is known about if and to what extent these early stages, which result in the softening of the enamel surface, are reversible. The present study investigated the possible rehardening of surface softened enamel in two separate experiments in vitro, employing physiologically relevant demineralization and remineralization times and remineralizing solutions possessing chemical properties close to those of human saliva. Atomic force microscopy (AFM) based nanoindentation has been used to study the nanomechanical properties and the ultrastructure of polished enamel samples as affected by demineralization/remineralization cycles. In contradiction to previous studies employing microhardness techniques, no enamel rehardening has been observed after remineralization; however, the demineralization schemes used in the present study (short treatments with a citric acid buffer) are not comparable to the ones used in previous studies, making a comparison difficult. A mineral deposition after remineralization on softened enamel samples has been observed by AFM; however, a protective effect of this deposited layer could not be revealed. The exposure of softened enamel samples to either a remineralizing solution or a mineral water led to an improved acid resistance of these samples as shown in a demineralization/remineralization cycle. The present study has demonstrated that AFM based nanoindentation is a useful tool to investigate the demineralization and remineralization of surface softened enamel with high accuracy.

PMID:
15533417
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk