Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Brain Res Mol Brain Res. 2004 Nov 24;131(1-2):58-64.

Hippocampal synaptic plasticity in mice devoid of cellular prion protein.

Author information

  • 1Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina.

Abstract

The cellular prion protein plays a role in the etiology of transmissible and inherited spongiform encephalopathies. However, the physiological role of the cellular prion protein is still under debate. Results regarding the synaptic transmission using the same strain of animals where the cellular prion protein gene was ablated are controversial, and need further investigation. In this work, we have studied the hippocampal synaptic transmission in mice devoid of normal cellular prion protein, and have shown that these animals present an increased excitability in this area by the lower threshold (20 Hz) to generate long-term potentiation (LTP) in hippocampal dentate gyrus when compared to wild-type animals. The mice devoid of normal cellular prion protein are also more sensitive to the blocking effects of dizocilpine and 2-amino-5-phosphonopentanoic acid on the hippocampal long-term potentiation generation. In situ hydridization experiments demonstrated overexpression of the mRNAs for the N-methyl-D-aspartate (NMDA) receptor NR2A and NR2B subunits in mice devoid of normal cellular prion protein. Therefore, our results indicate that these animals have an increased hippocampal synaptic plasticity which can be explained by a facilitated glutamatergic transmission. The higher expression of specific N-methyl-d-aspartate receptor subunits may account for these effects.

PMID:
15530652
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk