Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2004 Nov;70(11):6587-94.

Display of biologically functional insecticidal toxin on the surface of lambda phage.

Author information

  • 1Department of Biochemistry, Cambridge University, Cambridge, United Kingdom.

Abstract

The successful use of Bacillus thuringiensis insecticidal toxins to control agricultural pests could be undermined by the evolution of insect resistance. Under selection pressure in the laboratory, a number of insects have gained resistance to the toxins, and several cases of resistance in the diamondback moth have been reported from the field. The use of protein engineering to develop novel toxins active against resistant insects could offer a solution to this problem. The display of proteins on the surface of phages has been shown to be a powerful technology to search for proteins with new characteristics from combinatorial libraries. However, this potential of phage display to develop Cry toxins with new binding properties and new target specificities has hitherto not been realized because of the failure of displayed Cry toxins to bind their natural receptors. In this work we describe the construction of a display system in which the Cry1Ac toxin is fused to the amino terminus of the capsid protein D of bacteriophage lambda. The resultant phage was viable and infectious, and the displayed toxin interacted successfully with its natural receptor.

PMID:
15528522
[PubMed - indexed for MEDLINE]
PMCID:
PMC525175
Free PMC Article

Images from this publication.See all images (5)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk