Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Endocrinol. 2004 Oct;33(2):387-410.

Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors.

Author information

  • 1Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA. carolyn.klinge@louisville.edu

Abstract

One mechanism by which ligand-activated estrogen receptors alpha and beta (ERalpha and ERbeta) stimulate gene transcription is through direct ER interaction with specific DNA sequences, estrogen response elements (EREs). ERE-bound ER recruits coactivators that stimulate gene transcription. Binding of ER to natural and synthetic EREs with different nucleotide sequences alters ER binding affinity, conformation, and transcriptional activity, indicating that the ERE sequence is an allosteric effector of ER action. Here we tested the hypothesis that alterations in ER conformation induced by binding to different ERE sequences modulates ER interaction with coactivators and corepressors. CHO-K1 cells transfected with ERalpha or ERbeta show ERE sequence-dependent differences in the functional interaction of ERalpha and ERbeta with coactivators steroid receptor coactivator 1 (SRC-1), SRC-2 (glucocorticoid receptor interacting protein 1 (GRIP1)), SRC-3 amplified in breast cancer 1 (AIB1) and ACTR, cyclic AMP binding protein (CBP), and steroid receptor RNA activator (SRA), corepressors nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT), and secondary coactivators coactivator associated arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 (PRMT1). We note both ligand-independent as well estradiol- and 4-hydroxytamoxifen-dependent differences in ER-coregulator activity. In vitro ER-ERE binding assays using receptor interaction domains of these coregulators failed to recapitulate the cell-based results, substantiating the importance of the full-length proteins in regulating ER activity. These data demonstrated that the ERE sequence impacts estradiol-and 4-hydroxytamoxifen-occupied ERalpha and ERbeta interaction with coregulators as measured by transcriptional activity in mammalian cells.

PMID:
15525597
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk