Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2005 Feb 15;386(Pt 1):1-13.

Essential tension and constructive destruction: the spindle checkpoint and its regulatory links with mitotic exit.

Author information

  • 1Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.


Replicated genetic material must be partitioned equally between daughter cells during cell division. The precision with which this is accomplished depends critically on the proper functioning of the mitotic spindle. The assembly, orientation and attachment of the spindle to the kinetochores are therefore constantly monitored by a surveillance mechanism termed the SCP (spindle checkpoint). In the event of malfunction, the SCP not only prevents chromosome segregation, but also inhibits subsequent mitotic events, such as cyclin destruction (mitotic exit) and cytokinesis. This concerted action helps to maintain temporal co-ordination among mitotic events. It appears that the SCP is primarily activated by either a lack of occupancy or the absence of tension at kinetochores. Once triggered, the inhibitory circuit bifurcates, where one branch restrains the sister chromatid separation by inhibiting the E3 ligase APC(Cdc20) (anaphase-promoting complex activated by Cdc20) and the other impinges on the MEN (mitotic exit network). A large body of investigations has now led to the identification of the control elements, their targets and the functional coupling among them. Here we review the emerging regulatory network and discuss the remaining gaps in our understanding of this effective mechanochemical control system.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk