Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2005 Jan 7;280(1):253-60. Epub 2004 Nov 1.

Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae.

Author information

  • 1Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.

Abstract

Methylglyoxal (MG) is a typical 2-oxoaldehyde derived from glycolysis, although it inhibits the growth of cells in all types of organism. Hence, it has been questioned why such a toxic metabolite is synthesized via the ubiquitous energy-generating pathway. We have previously reported that expression of GLO1, coding for the major enzyme detoxifying MG, was induced by osmotic stress in a high osmolarity glycerol (HOG)-mitogen-activated protein (MAP) kinase-dependent manner in Saccharomyces cerevisiae. Here we show that MG activates the HOG-MAP kinase cascade. Two osmosensors, Sln1 and Sho1, have been identified to function upstream of the HOG-MAP kinase cascade, and we reveal that MG initiates the signal transduction to this MAP kinase cascade through the Sln1 branch. We also demonstrate that MG activates the Msn2 transcription factor. Moreover, MG activated the uptake of Ca(2+) in yeast cells, thereby stimulating the calcineurin/Crz1-mediated Ca(2+) signaling pathway. We propose that MG functions as a signal initiator in yeast.

PMID:
15520007
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk