Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomech. 2005 Jan;38(1):69-75.

Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.

Author information

  • 1Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.

Abstract

The purpose of this study was to determine if an association exists between the tensile properties and the collagen fibril diameter distribution in in vitro stress-deprived rat tail tendons. Rat tail tendons were paired into two groups of 21 day stress-deprived and 0 time controls and compared using transmission electron microscopy (n = 6) to measure collagen fibril diameter distribution and density, and mechanical testing (n =6) to determine ultimate stress and tensile modulus. There was a statistically significant decrease in both ultimate tensile strength (control: 17.95+/-3.99 MPa, stress-deprived: 6.79+/-3.91 MPa) and tensile modulus (control: 312.8+/-89.5 MPa, stress-deprived: 176.0+/-52.7 MPa) in the in vitro stress-deprived tendons compared to controls. However, there was no significant difference between control and stress-deprived tendons in the number of fibrils per tendon counted, mean fibril diameter, mean fibril density, or fibril size distribution. The results of this study demonstrate that the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons is not correlated with the collagen fibril diameter distribution and, therefore, the collagen fibril diameter distribution does not, by itself, dictate the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons.

PMID:
15519341
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk