Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2004 Dec;32(Pt 6):1048-50.

The third extracellular loop of G-protein-coupled receptors: more than just a linker between two important transmembrane helices.

Author information

  • 1School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Abstract

GPCRs (G-protein-coupled receptors) are a large family of structurally related proteins, which mediate their effects by coupling with G-proteins. Despite responding to a range of very diverse stimuli, these receptors exhibit a conserved tertiary structure comprising a bundle of seven TM (transmembrane) helices linked by alternating ECLs (extracellular loops) and ICLs (intracellular loops). The hydrophobic environment formed by the cluster of TM helices is functionally important. For example, the 11-cis retinal chromophore of rhodopsin forms a protonated Schiff base linkage to a lysine in TM7, deep within the helical bundle, and small ligands, such as amine neurotransmitters and non-peptide analogues of peptide hormones, also bind within the corresponding region of their cognate receptors. In addition, activation of GPCRs involves relative movement of TM helices to present G-protein interaction sites across the intracellular face of the receptor. Consequently, it might be assumed that the ECLs of the GPCR are inert peptide linkers that merely connect important TM helices. Focusing on ECL3 (third ECL), it is becoming increasingly apparent that this extracellular domain can fulfil a range of important roles with respect to GPCR signalling, including agonist binding, ligand selectivity and receptor activation.

PMID:
15506960
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press
    Loading ...
    Write to the Help Desk