Format

Send to:

Choose Destination
See comment in PubMed Commons below
Kidney Int. 2004 Nov;66(5):1977-87.

Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells.

Author information

  • 1Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

Abstract

BACKGROUND:

We recently demonstrated that homocysteine (Hcys) increases superoxide (O2-) production via NADH/NADPH oxidase in renal mesangial cells. This O2- production contributes to increased expression of tissue inhibitor of metalloproteinase (TIMP-1) and consequent deposition of collagen in response to Hcys. However, the mechanism by which Hcys activates NADH/NADPH oxidase remains unknown. Given that ceramide is an intracellular activator of this oxidase in several cell types, the present study tests the hypothesis that Hcys activates NADH/NADPH oxidase through a ceramide-mediated signaling pathway in rat mesangial (MG) cells, resulting in O2- production.

METHODS:

Rat MG cells were incubated with L-homocysteine (L-Hcys) to determine the mechanism by which Hcys activates NADH/NADPH oxidase. Thin layer chromatography (TLC), Western blot analysis, Rac GTPase activity pull down assay, and NADH/NADPH oxidase activity measurements were performed.

RESULTS:

TLC analysis demonstrated that L-Hcys increased de novo production of ceramide in MG cells. L-Hcys and increased ceramide did not alter the amount of NADH/NADPH oxidase subunit p47phox and p67phox in both membrane and cytosolic fractions from MG cells. However, L-Hcys or ceramide markedly increased the level of GTP-bound Rac, which was accompanied by enhanced activity of NADH/NADPH oxidase. These Hcys or ceramide-induced actions were substantially blocked by a Rac GTPase inhibitor, GDPbetaS, and a de novo ceramide synthesis inhibitor, fumonisin B1 (FB1).

CONCLUSION:

These results indicate that Hcys activates NADH/NADPH oxidase by stimulating de novo ceramide synthesis, and subsequently enhancing Rac GTPase activity in rat MG cells. This ceramide-Rac GTPase signaling pathway may mediate Hcys-induced oxidative stress in these glomerular cells.

PMID:
15496169
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk