Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Oct 15;64(20):7432-8.

Spermine acts as a negative regulator of macrophage differentiation in human myeloid leukemia cells.

Author information

  • 1Biochip Technology Center, Argonne National Laboratory, Argonne, Illinois, USA.

Abstract

The role of putrescine, spermidine and spermine in phorbol 12-myristate-13-acetate (PMA)-induced macrophage differentiation was examined in human HL-60 and U-937 myeloid leukemia cells. Unlike other polyamines, spermine affected this differentiation by acting as a negative regulator. This negative regulation was established by showing that the PMA-induced macrophage phenotype, but not PMA-associated replication arrest, was abrogated (a) by replenishing the PMA-evoked decrease in cellular spermine levels with this polyamine from an exogenous source and (b) by blocking PMA-induced expression of the polyamine catabolic enzyme N(1)-spermidine/spermine acetyltransferase (SSAT) with antisense oligonucleotides in the presence of low substrate level. The PMA-evoked reduction in cellular spermine appears to result from an increase in the activity of SSAT and a decrease in the activity of ornithine decarboxylase, the polyamine biosynthetic enzyme. To a degree, these changes are due to corresponding changes in the expression of the genes that code for these enzymes. When cell differentiation is initiated, SSAT expression is increased after PMA-evoked activation of protein kinase C-beta. The present studies raise the possibility that agents able to reduce spermine levels in patients' myeloid leukemia cells may enhance the activity of differentiation therapy drugs for this type of leukemia.

PMID:
15492267
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk