Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Metab Eng. 2004 Oct;6(4):268-76.

Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine.

Author information

  • 1Department of Chemical Engineering, Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA.


Transgenic hairy roots of Catharanthus roseus were established with glucocorticoid inducible tryptophan decarboxylase (TDC) expression alone or in combination with inducible expression of a feedback-resistant anthranilate synthase alpha subunit (ASalpha) from Arabidopsis. Northern blot analysis confirmed transcription of the anthranilate synthase gene upon induction in the double line (TDC+ASalpha) and in vitro enzyme assays confirmed increased resistance to feedback inhibition by tryptophan. In TDC enzyme assays, increases of 48% and 87% in the TDC and double lines, respectively, were noted. Although the TDC line showed no significant increase in tryptamine levels on induction, induction of the double line resulted in increases in tryptamine levels of as much as six-fold for a 3 day late exponential induction. Downstream effects on alkaloids were noted in the TDC line where serpentine specific yields increased as much as 129% on induction. No effects on measured alkaloids were noted in the double line, but the two clones have very different basal alkaloid biosynthetic capacities. Within this study, the engineering of the indole pathway in C. roseus hairy roots is reported, and the role of the indole pathway in alkaloid biosynthesis explored.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk