Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurobiol. 2004 Dec;61(3):392-9.

Population density regulates Drosophila synaptic morphology in a Fasciclin-II-dependent manner.

Author information

  • 1Department of Life Sciences and Zoology, University of Toronto at Scarborough, Toronto, ON, Canada. stewart@utsc.utoronto.ca

Abstract

Genetic analysis of the Drosophila larval neuromuscular junction has identified some of the key molecules that regulate synaptic plasticity. Among these molecules, the expression level of Fasciclin II (FasII), a homophilic cell adhesion molecule, is critically important for determining the final form of the neuromuscular junction. Genetic reduction of FasII expression by 50% yields more elaborate nerve terminals, while a greater reduction in expression, to 10% of wild-type, yields a substantial reduction in the nerve terminal morphology. Importantly, regulation of FasII expression seems to be the final output for several genetic manipulations that transform NMJ morphology. In an effort to understand the importance of this regulatory pathway in the normal animal, we have undertaken studies to identify environmental cues that might be important for initiating FasII-dependent changes in synaptic plasticity. Here we report on the relationship between larval population density and synaptic morphology, synaptic strength, and FasII levels. We raised Drosophila larvae under conditions of increasing population density and found an inverse exponential relationship between population density and the number of synaptic boutons, the number of branches, and the length of branches. We also observed population-dependent alteration in FasII levels, with lower densities having less FasII at the synapse. The correlation between density and morphological change was abrogated in larvae constitutively expressing FasII, and in wild-type larvae grown on soft culture medium. Together these data show that environmental cues can induce regulation of FasII. Interestingly, however, the quantal content of synaptic transmission was not different among the different population densities, suggesting that other factors contribute to maintaining synaptic strength at a defined level.

copyright (c) 2004 Wiley Periodicals, Inc.

PMID:
15490479
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk