Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2004 Dec 2;23(56):9062-9.

PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways.

Author information

  • 1Department of Pathology and Neurology, University of Virginia, Charlottesville, VA 22908, USA. sea4s@virginia.edu


We previously demonstrated that protein kinase C-eta (PKC-eta) mediates a phorbol 12-myristate-13-acetate (PMA)-induced proliferative response in human glioblastoma (GBM) cells. In this report, we show that PMA-stimulated activation of PKC-eta in U-251 GBM cells resulted in activation of both Akt and the mammalian target of rapamycin (mTOR) signaling pathways and an increase in cell proliferation. Expression of a kinase dead PKC-eta (PKC-etaKR) construct reduced the basal and PMA-evoked proliferation of PKC-eta-expressing U-251 GBM cells, as well as abrogated the PMA-induced activation of Akt, mTOR, and the mTOR targets 4E-BP1 and STAT-3. Treatment of cells with the PI-3 kinase inhibitor LY294002 (10 muM) or the mTOR inhibitor rapamycin (10 nM) also reduced PMA-induced proliferation and cell-cycle progression. Expression of a constitutively active PKC-eta (PKC-etaDeltaNPS) construct in a GBM cell line with no endogenous PKC-eta (U-1242) also provided evidence that PKC-eta targets the Akt and mTOR signaling pathways. Moreover, activation of 4E-BP1 and STAT-3 in both PMA-treated U-251 and PKC-etaDeltaNPS-expressing U-1242 GBM cells was inhibited by rapamycin. However, activation of Akt, but not mTOR was inhibited by the PI-3 kinase inhibitor LY294002. This study identifies Akt and mTOR as downstream targets of PKC-eta that are involved in GBM cell proliferation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk