Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2005 Feb;169(2):1045-59. Epub 2004 Oct 16.

Joint mapping of quantitative trait Loci for multiple binary characters.

Author information

  • 1Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.


Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing pleiotropic effects and close linkage. Joint mapping also can improve statistical power of QTL detection. However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance traits are measured as one or more discrete characters. These discrete characters are often correlated. Joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the binary phenotypes through some underlying thresholds. The new method actually maps loci for the variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated data. We also apply the new method to a set of real data and detect several loci responsible for blast resistance in rice.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk