SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences

J Bacteriol. 2004 Nov;186(21):7186-95. doi: 10.1128/JB.186.21.7186-7195.2004.

Abstract

The sigma(S) subunit of RNA polymerase, the product of the rpoS gene, controls the expression of genes responding to starvation and cellular stresses. Using gene array technology, we investigated rpoS-dependent expression at the onset of stationary phase in Escherichia coli grown in rich medium. Forty-one genes were expressed at significantly lower levels in an rpoS mutant derived from the MG1655 strain; for 10 of these, we also confirmed rpoS and stationary-phase dependence by reverse transcription-PCR. Only seven genes (dps, osmE, osmY, sodC, rpsV, wrbA, and yahO) had previously been recognized as rpoS dependent. Several newly identified rpoS-dependent genes are involved in the uptake and metabolism of amino acids, sugars, and iron. Indeed, the rpoS mutant strain shows severely impaired growth on some sugars such as fructose and N-acetylglucosamine. The rpoS gene controls the production of indole, which acts as a signal molecule in stationary-phase cells, via regulation of the tnaA-encoded tryptophanase enzyme. Genes involved in protein biosynthesis, encoding the ribosome-associated protein RpsV (sra) and the initiation factor IF-1 (infA), were also induced in an rpoS-dependent fashion. Using primer extension, we determined the promoter sequences of a selection of rpoS-regulated genes representative of different functional classes. Significant fractions of these promoters carry sequence features specific for Esigma(S) recognition of the -10 region, such as cytosines at positions -13 (70%) and -12 (30%) as well as a TG motif located upstream of the -10 region (50%), thus supporting the TGN(0-2)C(C/T)ATA(C/A)T consensus sequence recently proposed for sigma(S).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Base Sequence
  • Culture Media
  • Escherichia coli / genetics
  • Escherichia coli / growth & development*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Gene Expression Profiling
  • Gene Expression Regulation, Bacterial*
  • Genes, Bacterial
  • Molecular Sequence Data
  • Oligonucleotide Array Sequence Analysis
  • Promoter Regions, Genetic / genetics*
  • Sigma Factor / genetics
  • Sigma Factor / metabolism*
  • Transcription, Genetic

Substances

  • Bacterial Proteins
  • Culture Media
  • Escherichia coli Proteins
  • Sigma Factor
  • sigma factor KatF protein, Bacteria