Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L895-901.

Functional and morphological studies of protein transcytosis in continuous endothelia.

Author information

  • 1Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois 60612, USA.

Abstract

Continuous microvascular endothelium constitutively transfers protein from vessel lumen to interstitial space. Compelling recent biochemical, ultrastructural, and physiological evidence reviewed herein demonstrates that protein transport is not the result of barrier "leakiness" but, rather, is an active process occurring primarily in a transendothelial vesicular pathway. Protein accesses the vesicular pathway by means of caveolae open to the vessel lumen. Vascular tracer proteins appear in free cytoplasmic vesicles within minutes; contents of transport vesicles are rapidly deposited into the subendothelial matrix by exocytosis. Caveolin-1 deficiency eliminates caveolae and abolishes vesicular protein transport; interestingly, exchange vessels develop a compensatory transport mode through the opening of a paracellular permeability pathway. The evidence supports the transcytosis hypothesis and the concept that transcytosis is a fundamental component of transendothelial permeability of macromolecules.

PMID:
15475492
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk