Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2004 Oct;207(Pt 22):3985-97.

The effects of head and tail stimulation on the withdrawal startle response of the rope fish (Erpetoichthys calabaricus).

Author information

  • 1Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA.

Abstract

While most actinopterygian fishes perform C-start or S-start behaviors as their primary startle responses, many elongate species instead use a withdrawal movement. Studies of withdrawal have focused on the response to head-directed or nonspecific stimuli. During withdrawal, the animal moves its head back from the stimulus, often resulting in several tight bends in the body. In contrast to C-start or S-start behaviors, withdrawal to a head stimulus generally does not involve a subsequent propulsive stage of movement. We examined intraspecific diversity in withdrawal behavior and muscle activity patterns of the rope fish, Erpetoichthys calabaricus, in response to stimulation of the head and the tail. In addition, we describe the anatomy of the Mauthner cells and their axon caps, structures that are generally absent in species with a withdrawal startle. We recorded high-speed video (250 Hz) and electromyograms (EMGs) from 12 electrodes in the axial muscle during the behavioral response. We used Bodian silver staining techniques to visualize Mauthner cell and axon cap morphology. We found that E. calabaricus responds with a withdrawal to both head and tail stimulation. Tail stimulation elicits a stronger kinematic and muscle activity response than head stimulation. While withdrawal movement generally constitutes the entire response to head stimuli, withdrawal was followed by propulsive movements when the tail was stimulated, suggesting that withdrawal can both act alone and serve as the first stage of a propulsive startle. Unexpectedly, bilaterality of muscle activity was variable for responses to both head and tail stimuli. In addition, we were surprised to find that E. calabaricus has a distinct axon cap associated with its Mauthner cell. These data suggest that the withdrawal response is a more diverse functional system than has previously been believed.

PMID:
15472029
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk