Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2004 Oct 28;431(7012):1092-5. Epub 2004 Oct 6.

Bioturbators enhance ecosystem function through complex biogeochemical interactions.

Author information

  • 1National Institute of Water & Atmospheric Research, PO Box 11-115, Hillcrest, Hamilton, New Zealand. d.lohrer@niwa.co.nz

Abstract

Predicting the consequences of species loss is critically important, given present threats to biological diversity such as habitat destruction, overharvesting and climate change. Several empirical studies have reported decreased ecosystem performance (for example, primary productivity) coincident with decreased biodiversity, although the relative influence of biotic effects and confounding abiotic factors has been vigorously debated. Whereas several investigations focused on single trophic levels (for example, grassland plants), studies of whole systems have revealed multiple layers of feedbacks, hidden drivers and emergent properties, making the consequences of species loss more difficult to predict. Here we report functionally important organisms and considerable biocomplexity in a sedimentary seafloor habitat, one of Earth's most widespread ecosystems. Experimental field measurements demonstrate how the abundance of spatangoid urchins--infaunal (in seafloor sediment) grazers/deposit feeders--is positively related to primary production, as their activities change nutrient fluxes and improve conditions for production by microphytobenthos (sedimentatry microbes and unicellular algae). Declines of spatangoid urchins after trawling are well documented, and our research linking these bioturbators to important benthic-pelagic fluxes highlights potential ramifications for productivity in coastal oceans.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk