Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eukaryot Cell. 2004 Oct;3(5):1076-87.

Transcriptional response of Candida albicans upon internalization by macrophages.

Author information

  • 1Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin, Houston, TX 77030, USA. Michael.Lorenz@uth.tmc.edu

Abstract

The opportunistic fungal pathogen Candida albicans is both a benign gut commensal and a frequently fatal systemic pathogen. The interaction of C. albicans with the host's innate immune system is the primary factor in this balance; defects in innate immunity predispose the patient to disseminated candidiasis. Because of the central importance of phagocytic cells in defense against fungal infections, we have investigated the response of C. albicans to phagocytosis by mammalian macrophages using genomic transcript profiling. This analysis reveals a dramatic reprogramming of transcription in C. albicans that occurs in two successive steps. In the early phase cells shift to a starvation mode, including gluconeogenic growth, activation of fatty acid degradation, and downregulation of translation. In a later phase, as hyphal growth enables C. albicans to escape from the macrophage, cells quickly resume glycolytic growth. In addition, there is a substantial nonmetabolic response imbedded in the early phase, including machinery for DNA damage repair, oxidative stress responses, peptide uptake systems, and arginine biosynthesis. Further, a surprising percentage of the genes that respond specifically to macrophage contact have no known homologs, suggesting that the organism has undergone substantial evolutionary adaptations to the commensal or pathogen lifestyle. This transcriptional reprogramming is almost wholly absent in the related, but nonpathogenic, yeast Saccharomyces cerevisiae, suggesting that these large-scale and coordinated changes contribute significantly to the ability of this organism to survive and cause disease in vivo.

PMID:
15470236
[PubMed - indexed for MEDLINE]
PMCID:
PMC522606
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk