Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Dec 17;279(51):53857-66. Epub 2004 Oct 1.

Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA.

Author information

  • 1Division of Structural Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

Abstract

Chordin-like cysteine-rich (CR) repeats (also referred to as von Willebrand factor type C (VWC) modules) have been identified in approximately 200 extracellular matrix proteins. These repeats, named on the basis of amino acid conservation of 10 cysteine residues, have been shown to bind members of the transforming growth factor-beta (TGF-beta) superfamily and are proposed to regulate growth factor signaling. Here we describe the intramolecular disulfide bonding, solution structure, and dynamics of a prototypical chordin-like CR repeat from procollagen IIA (CR(ColIIA)), which has been previously shown to bind TGF-beta1 and bone morphogenetic protein-2. The CR(ColIIA) structure manifests a two sub-domain architecture tethered by a flexible linkage. Initial structures were calculated using RosettaNMR, a de novo prediction method, and final structure calculations were performed using CANDID within CYANA. The N-terminal region contains mainly beta-sheet and the C-terminal region is more irregular with the fold constrained by disulfide bonds. Mobility between the N- and C-terminal sub-domains on a fast timescale was confirmed using NMR relaxation measurements. We speculate that the mobility between the two sub-domains may decrease upon ligand binding. Structure and sequence comparisons have revealed an evolutionary relationship between the N-terminal sub-domain of the CR module and the fibronectin type 1 domain, suggesting that these domains share a common ancestry. Based on the previously reported mapping of fibronectin binding sites for vascular endothelial growth factor to regions containing fibronectin type 1 domains, we discuss the possibility that this structural homology might also have functional relevance.

PMID:
15466413
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk