Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2005 Apr;26(10):1195-204.

Mechanistic aspects of in vitro fatigue-crack growth in dentin.

Author information

  • 1Department of Materials Science and Engineering, Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, 381 Hearst Mining Building, Berkeley CA 94720, USA.

Abstract

Although the propagation of fatigue cracks has been recognized as a problem of clinical significance in dentin, there have been few fracture mechanics-based studies that have investigated this issue. In the present study, in vitro cyclic fatigue experiments were conducted over a range of cyclic frequencies (1-50 Hz) on elephant dentin in order to quantify fatigue-crack growth behavior from the perspective of understanding the mechanism of fatigue in dentin. Specifically, results obtained for crack extension rates along a direction parallel to the dentinal tubules were found to be well described by the stress-intensity range, DeltaK, using a simple Paris power-law approach with exponents ranging from 12 to 32. Furthermore, a frequency dependence was observed for the crack-growth rates, with higher growth rates associated with lower frequencies. By using crack-growth experiments involving alternate cyclic and static loading, such fatigue-crack propagation was mechanistically determined to be the result of a "true" cyclic fatigue mechanism, and not simply a succession of static fracture events. Furthermore, based on the observed frequency dependence of fatigue-crack growth in dentin and observations of time-dependent crack blunting, a cyclic fatigue mechanism involving crack-tip blunting and re-sharpening is proposed. These results are deemed to be of importance for an improved understanding of fatigue-related failures in teeth.

PMID:
15451639
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk