Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1992 Mar 15;267(8):5162-70.

Structure and function of MRP20 and MRP49, the nuclear genes for two proteins of the 54 S subunit of the yeast mitochondrial ribosome.

Author information

  • 1Department of Biochemistry, University of Massachusetts, Amherst 01003.

Abstract

MRP20 and MRP49 are proteins of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae. Their genes were identified through immunological screening of a genomic library in the expression vector lambda gt11. Nucleotide sequencing revealed that MRP49 is tightly linked to TPK3 and encodes a 16-kDa, basic protein with no significant relatedness to any other known protein. MRP20 specifies a 263-amino-acid polypeptide with sequence similarity to members of the L23 family of ribosomal proteins. The levels of the mRNAs and proteins for both MRP20 and MRP49 were regulated in response to carbon source. In [rho0] strains lacking mitochondrial rRNA, the levels of the two proteins were reduced severalfold, presumably because the unassembled proteins are unstable. Null mutants of MRP20 converted to [rho-] or [rho0], a characteristic phenotype of mutations in essential genes for mitochondrial translation. Inactivation of MRP49 caused a cold-sensitive respiration-deficient phenotype, indicating that MRP49 is not an essential ribosomal protein. The mrp49 mutants were defective in the assembly of stable 54 S ribosomal subunits at the nonpermissive temperature. With the results presented here, there are now published sequences for 14 yeast mitochondrial ribosomal proteins, only five of which bear discernable relationships to eubacterial ribosomal proteins.

PMID:
1544898
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk