Display Settings:

Format

Send to:

Choose Destination
Rapid Commun Mass Spectrom. 2004;18(20):2451-64.

Structural analysis of permethylated oligosaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry and deutero-reduction.

Author information

  • 1Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, IFR 118, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France. willy.morelle@univ-lillel.fr

Abstract

Deutero-reduced permethylated oligosaccharides were analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) using a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, fitted with a nanoflow ESI source. Under these ionization conditions such derivatives preferentially form sodiated molecular species in addition to protonated molecular species. Under collision-induced dissociation, protonated and sodiated molecular species yield simple and predictable fragment mass spectra. A systematic study was conducted on a series of deutero-reduced permethylated glycans to allow rationalization of the fragmentation processes. MS/MS spectra were characterized by fragments resulting from the cleavage of glycosidic bonds. These fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Furthermore, the substituent 3-linked to a HexNAc unit was readily eliminated. Special attention was devoted to a systematic study of fucosylated glycans. The fucosylated deutero-reduced permethylated glycans were submitted to an acidic hydrolysis, releasing specifically the fucosyl residues. The nascent free hydroxyl groups were subsequently CD3-labelled in order to determine the positions initially bearing the fucosyl residues along the oligosaccharide backbone. This methodology was finally applied to characterize a glycan pool enzymatically released from glycoproteins. The present data show that structural elucidation can be achieved at the 50 fmol level.

2004 John Wiley & Sons, Ltd.

PMID:
15384134
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk