Display Settings:

Format

Send to:

Choose Destination
Curr Biol. 2004 Sep 21;14(18):R778-86.

Regulation of early events in chromosome replication.

Author information

  • Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK. John.Diffley@cancer.org.uk

Abstract

Eukaryotic genomes are replicated from large numbers of replication origins distributed on multiple chromosomes. The activity of these origins must be coordinated so that the entire genome is efficiently and accurately replicated yet no region of the genome is ever replicated more than once. The past decade has seen significant advances in understanding how the initiation of DNA replication is regulated by key cell-cycle regulators, including the cyclin dependent kinases (CDKs) and the anaphase promoting complex/cyclosome (APC/C). The assembly of essential prereplicative complexes (pre-RCs) at origins only occurs when CDK activity is low and APC/C activity is high. Origin firing, however, can only occur when the APC/C is inactivated and CDKs become active. This two step mechanism ensures that no origin can fire more than once in a cell cycle. In all eukaryotes tested, CDKs can contribute to the inhibition of pre-RC assembly. This inhibition is characterised both by high degrees of redundancy and evolutionary plasticity. Geminin plays a crucial role in inhibiting licensing in metazoans and, like cyclins, is inactivated by the APC/C. Strategies involved in preventing re-replication in different organisms will be discussed.

PMID:
15380092
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk