Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Neurosci. 2004 Oct;7(10):1096-103. Epub 2004 Sep 19.

Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans.

Author information

  • 1Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA. daniel.chase@yale.edu <daniel.chase@yale.edu>

Abstract

D1-like and D2-like dopamine receptors have synergistic and antagonistic effects on behavior. To understand the mechanisms underlying these effects, we studied dopamine signaling genetically in Caenorhabditis elegans. Knocking out a D2-like receptor, DOP-3, caused locomotion defects similar to those observed in animals lacking dopamine. Knocking out a D1-like receptor, DOP-1, reversed the defects of the DOP-3 knockout. DOP-3 and DOP-1 have their antagonistic effects on locomotion by acting in the same motor neurons, which coexpress the receptors and which are not postsynaptic to dopaminergic neurons. In a screen for mutants unable to respond to dopamine, we identified four genes that encode components of the antagonistic Galpha(o) and Galpha(q) signaling pathways, including Galpha(o) itself and two subunits of the regulator of G protein signaling (RGS) complex that inhibits Galpha(q). Our results indicate that extrasynaptic dopamine regulates C. elegans locomotion through D1- and D2-like receptors that activate the antagonistic Galpha(q) and Galpha(o) signaling pathways, respectively.

Comment in

PMID:
15378064
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk