Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Nov 5;279(45):47109-14. Epub 2004 Sep 16.

ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells.

Author information

  • 1Department of Molecular and Human Genetics and Bone Disease Program of Texas, Baylor College of Medicine, Houston, Texas 77030, USA.

Abstract

Based on the analysis of a loss-of-function model, we recently showed that ATF4 regulates osteoblast terminal differentiation and function and is implicated in the pathophysiology of Coffin-Lowry syndrome. That study, however, did not address whether forced expression of Atf4 in non-osteoblastic cells would lead to osteoblast-specific gene expression, one of the most important features of a cell differentiation factor. To address this question we searched for cell lines that would not express Atf4. Contrasting with the restricted pattern of its protein accumulation, Atf4 mRNA was found in all cell lines and mouse tissues tested. Treatment of non-osteoblastic cells with MG115, a proteasome inhibitor, induced ATF4 accumulation and resulted in activation of an Osteocalcin promoter luciferase construct as well as expression of endogenous Osteocalcin, a molecular marker of differentiated osteoblasts and a target gene of ATF4. Eliminating the expression of beta-TrCP1, an ubiquitin-protein isopeptide ligase interacting with ATF4 by RNA interference, led to ATF4 accumulation and to endogenous Osteocalcin expression in fibroblasts. These results indicate that the absence of ATF4 in most cell types is determined, at least in part, by an ubiquitination-dependent process. To our knowledge ATF4 is the first cell-specific transcription factor in which cell-specific distribution is achieved post-translationally. This study also establishes that ATF4, like other osteoblast differentiation factors, such as Runx2 and Osterix, has the ability to induce osteoblast-specific gene expression in non-osteoblastic cells.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk