Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Nov 26;279(48):49755-61. Epub 2004 Sep 15.

Effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase.

Author information

  • 1Département de biochimie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.

Abstract

The RNA polymerase activity of the hepatitis C virus, a major human pathogen, has previously been shown to be supported by metal ions. In the present study, we report a systematic analysis of the effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase. Chemical and thermal denaturation assays revealed that the stability of the protein is increased significantly in the presence of metal ions. Structural analyses clearly established that metal ion binding increases hydrophobic exposure on the RNA polymerase surface. Furthermore, our denaturation studies, coupled with polymerization assays, demonstrate that the active site region of the polymerase is more sensitive to chemical denaturant than other structural scaffolds. We also report the first detailed study of the thermodynamic parameters involved in the interaction between the hepatitis C virus RNA polymerase and metal ions. Finally, a mutational analysis was also performed to investigate the importance of Asp(220), Asp(318), and Asp(319) for metal ion binding. This mutational study underscores a strict requirement for each of the residues for metal binding, indicating that the active center of the HCV RNA polymerase is intolerant to virtually any perturbations of the metal coordination sphere, thereby highlighting the critical role of the enzyme-bound metal ions. Overall, our results indicate that metal ions play a dual modulatory role in the RNA polymerase reaction by promoting both a favorable geometry of the active site for catalysis and by increasing the structural stability of the enzyme.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk