Send to:

Choose Destination
See comment in PubMed Commons below
Angew Chem Int Ed Engl. 2004 Sep 20;43(37):4848-70.

DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.

Author information

  • 1Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.


In contrast to the approach commonly taken by chemists, nature controls chemical reactivity by modulating the effective molarity of highly dilute reactants through macromolecule-templated synthesis. Nature's approach enables complex mixtures in a single solution to react with efficiencies and selectivities that cannot be achieved in conventional laboratory synthesis. DNA-templated organic synthesis (DTS) is emerging as a surprisingly general way to control the reactivity of synthetic molecules by using nature's effective-molarity-based approach. Recent developments have expanded the scope and capabilities of DTS from its origins as a model of prebiotic nucleic acid replication to its current ability to translate DNA sequences into complex small-molecule and polymer products of multistep organic synthesis. An understanding of fundamental principles underlying DTS has played an important role in these developments. Early applications of DTS include nucleic acid sensing, small-molecule discovery, and reaction discovery with the help of translation, selection, and amplification methods previously available only to biological molecules.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk