Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Agric Food Chem. 2004 Sep 22;52(19):5843-8.

Chemical constituents of Morinda citrifolia fruits inhibit copper-induced low-density lipoprotein oxidation.

Author information

  • 1Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.

Abstract

The oxidative modification of low-density lipoprotein (LDL) plays an important role in the genesis of arteriosclerosis. The present study focused on the effects of the fruits of Morinda citrifolia on preventing arteriosclerosis. The MeOH extract and CHCl(3)-, EtOAc-, n-BuOH-, and H(2)O-soluble phases derived from the fruits of M. citrifolia were evaluated for their inhibitory activity on copper-induced LDL oxidation by the thiobarbituric acid-reactive substances (TBARS) method. The MeOH extract and EtOAc-soluble phase showed 88 and 96% inhibition, respectively. Six lignans were isolated by repeated column chromatography from the EtOAc-soluble phase. These compounds were determined by spectroscopic analysis to be 3,3'-bisdemethylpinoresinol (1), americanol A (2), americanin A (3), americanoic acid A (4), morindolin (5), and isoprincepin (6), of which 4 and 5 are novel compounds. These compounds inhibited copper-induced LDL oxidation in a dose-dependent manner. 1, 2, 5, and 6 exhibited remarkably strong activities, which were the same or better than that of the known antioxidant 2,6-di-tert-butyl-p-cresol. The IC(50) values for 1, 2, 5, and 6 were 1.057, 2.447, 2.020, and 1.362 microM, respectively. The activity of these compounds is mainly due to their number of phenolic hydroxyl groups.

PMID:
15366830
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk