Send to:

Choose Destination
See comment in PubMed Commons below
J Cereb Blood Flow Metab. 2004 Sep;24(9):964-71.

PAR-1 deficiency protects against neuronal damage and neurologic deficits after unilateral cerebral hypoxia/ischemia.

Author information

  • 1Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.


Cardiovascular and neurologic surgeries often involve a temporary reduction in cerebral blood flow. In these conditions, as well as during cerebral ischemia and traumatic brain injury, the temporary loss of oxygen and glucose initiates a cascade of cellular events that culminate in neuronal death and damage. Understanding the mechanisms that contribute to neuronal death after hypoxia/ischemia is critically important for treatment of such brain injury. Here, we use a model of combined cerebral hypoxia/ischemia (H/I) to examine the role of protease-activated receptor-1 (PAR-1) in hypoxic/ischemic neuronal damage. Our data show that PAR-1-deficient mice have smaller lesion volumes than wild-type controls after 45 minutes of H/I. The results of the genetic block of PAR-1 were corroborated using a PAR-1 antagonist, which decreased infarct volume in wild-type C57Bl6 mice. Examination of cellular responses to H/I reveals that PAR-1 -/- animals have less cellular death and diminished glial fibrillary acidic protein expression. Additionally, PAR-1 -/- mice exhibit less motor behavior impairment in rotorod and inverted wire-hang tests. These data suggest that PAR-1 contributes to hypoxic/ischemic brain injury and are consistent with other studies that implicate serine proteases and their receptors in neuropathology after cerebral insults.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk