Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2005 Jan;22(1):85-90. Epub 2004 Sep 8.

Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.

Author information

  • 1The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. jan.andersson@icm.uu.se


Rare evolutionary events, such as lateral gene transfers and gene fusions, may be useful to pinpoint, and correlate the timing of, key branches across the tree of life. For example, the shared possession of a transferred gene indicates a phylogenetic relationship among organismal lineages by virtue of their shared common ancestral recipient. Here, we present phylogenetic analyses of prolyl-tRNA and alanyl-tRNA synthetase genes that indicate lateral gene transfer events to an ancestor of the diplomonads and parabasalids from lineages more closely related to the newly discovered archaeal hyperthermophile Nanoarchaeum equitans (Nanoarchaeota) than to Crenarchaeota or Euryarchaeota. The support for this scenario is strong from all applied phylogenetic methods for the alanyl-tRNA sequences, whereas the phylogenetic analyses of the prolyl-tRNA sequences show some disagreements between methods, indicating that the donor lineage cannot be identified with a high degree of certainty. However, in both trees, the diplomonads and parabasalids branch together within the Archaea, strongly suggesting that these two groups of unicellular eukaryotes, often regarded as the two earliest independent offshoots of the eukaryotic lineage, share a common ancestor to the exclusion of the eukaryotic root. Unfortunately, the phylogenetic analyses of these two aminoacyl-tRNA synthetase genes are inconclusive regarding the position of the diplomonad/parabasalid group within the eukaryotes. Our results also show that the lineage leading to Nanoarchaeota branched off from Euryarchaeota and Crenarchaeota before the divergence of diplomonads and parabasalids, that this unexplored archaeal diversity, currently only represented by the hyperthermophilic organism Nanoarchaeum equitans, may include members living in close proximity to mesophilic eukaryotes, and that the presence of split genes in the Nanoarchaeum genome is a derived feature.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk