Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2004 Sep 15;173(6):3589-93.

Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B.

Author information

  • 1Division of Molecular Life Sciences, Center for Cell Signaling Research, Ewha Womans University, Seoul, Korea.

Abstract

LPS, the primary constituent of the outer membrane of Gram-negative bacteria, is recognized by TLR4. Binding of TLR4 to LPS triggers various cell signaling pathways including NF-kappaB activation and reactive oxygen species (ROS) production. In this study, we present the data that LPS-induced ROS generation and NF-kappaB activation are mediated by a direct interaction of TLR4 with (NAD(P)H oxidase 4 (Nox) 4), a protein related to gp91phox (Nox2) of phagocytic cells, in HEK293T cells. Yeast two hybrid and GST pull-down assays indicated that the COOH-terminal region of Nox4 interacted with the cytoplasmic tail of TLR4. Knockdown of Nox4 by transfection of small interference RNA specific to the Nox4 isozyme in HEK293T cells expressing TLR4 along with MD2 and CD14 resulted in inhibition of LPS-induced ROS generation and NF-kappaB activation. Taken together, these results indicate that direct interaction of TLR4 with Nox4 is involved in LPS-mediated ROS generation and NF-kappaB activation.

Copyright 2004 The American Association of Immunologists, Inc.

PMID:
15356101
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk