Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res Dev Brain Res. 2004 Sep 17;152(2):159-69.

High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells.

Author information

  • 1Stem Cell Group, R&D Systems, Inc., Minneapolis, MN 55413, USA.

Abstract

Neural precursor cells (NPCs) are self-renewing, multipotent progenitors that give rise to neurons, astrocytes and oligodendrocytes in the central nervous system (CNS). Fetal NPCs have attracted attention for their potential use in studying normal CNS development. Several studies of rodent neural progenitors have suggested that chemokines and their receptors are involved in directing NPC migration during CNS development. In this study, we established a consistent system to culture human NPCs and examined the expression of chemokine receptors on these cells. NPCs were found to express the markers nestin and CD133 and to differentiate into neurons, astrocytes and oligodendrocytes at the clonal level. Flow cytometry and RNase protection assay (RPA) indicated that NPCs express high levels of CXCR4 and low levels of several other chemokine receptors. When examined using a chemotaxis assay, NPCs were able to respond to CXCL12/SDF-1alpha, a ligand of CXCR4. Treatment with anti-CXCR4 antibody or HIV-1 gp120 abolished the migratory response of NPCs towards CXCL12/SDF-1alpha. These findings suggest that CXCR4 may play a significant role in directing NPC migration during CNS development.

PMID:
15351504
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk