Format

Send to

Choose Destination
See comment in PubMed Commons below
Antioxid Redox Signal. 2004 Oct;6(5):895-913.

Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance.

Author information

  • 1Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy. calabres@mbox.unict.it

Abstract

Efficient functioning of maintenance and repair processes seems to be crucial for both survival and physical quality of life. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed "vitagenes," among these, the heat shock system, a highly conserved mechanism responsible for the preservation and repair of cellular macromolecules, such as proteins, RNAs, and DNA. Recent studies have shown that the heat shock response contributes to establishing a cytoprotective state in a wide variety of human diseases, including ischemia and reperfusion damage, inflammation, cancer, as well as metabolic and neurodegenerative disorders. Recently, the involvement of the heme oxygenase (HO) pathway in antidegenerative mechanisms has received considerable attention, as it has been demonstrated that the expression of HO is closely related to that of amyloid precursor protein. HO induction occurs together with the induction of other heat shock proteins during various physiopathological conditions. The vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, products of HO-catalyzed reaction, represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response, molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. Particularly, manipulation of endogenous cellular defense mechanisms, via the heat shock response, through nutritional antioxidants or pharmacological compounds, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration. Consistently, by maintaining or recovering the activity of vitagenes, it is feasible to delay the aging process and decrease the occurrence of age-related diseases with resulting prolongation of a healthy life span.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk