Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2004 Aug;167(4):1781-90.

Conditional expression in the malaria mosquito Anopheles stephensi with Tet-On and Tet-Off systems.

Author information

  • 1European Molecular Biology Laboratory, Heidelberg D-69117, Germany.

Abstract

We report successful conditional gene expression in the malaria vector, Anopheles stephensi, on the basis of binary systems consisting of gene driver and responder transgenic lines generated by Minos-mediated germline transformation. An A. gambiae tissue-specific enhancer derived from a serpin (SRPN10) gene was utilized to control the temporal and spatial expression of doxycycline (dox)-sensitive transcriptional regulators in the driver lines. The "Tet-Off" driver utilized the tetracycline-controlled transcriptional activator (tTA) that is unable to bind and activate transcription from tetracycline operators (TetO) in the presence of dox; the "Tet-on" driver utilized the reverse tTA (rtTA) that, conversely, binds and activates TetO operators in the presence of dox. The responder lines carried insertions encompassing a LacZ reporter gene, cis-regulated by a TetO-P-element hybrid promoter. The progeny of crosses between driver and responder lines expressed beta-galactosidase under dual, tissue-specific and dox-mediated regulation. In adult rtTA/TetOPlacZ progeny, dox treatment rapidly induced beta-galactosidase activity throughout the midgut epithelium and especially in malaria parasite-invaded epithelial cells. Transactivator-dependent, dox-mediated regulation was observed in hemocytes and pericardial cells using both systems. Conditional tissue-specific regulation is a powerful tool for analyzing gene function in mosquitoes and potentially for development of strategies to control disease transmission.

Copyright 2004 Genetics Society of America

PMID:
15342516
[PubMed - indexed for MEDLINE]
PMCID:
PMC1471022
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk