Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2004 Aug;167(4):1781-90.

Conditional expression in the malaria mosquito Anopheles stephensi with Tet-On and Tet-Off systems.

Author information

  • 1European Molecular Biology Laboratory, Heidelberg D-69117, Germany.


We report successful conditional gene expression in the malaria vector, Anopheles stephensi, on the basis of binary systems consisting of gene driver and responder transgenic lines generated by Minos-mediated germline transformation. An A. gambiae tissue-specific enhancer derived from a serpin (SRPN10) gene was utilized to control the temporal and spatial expression of doxycycline (dox)-sensitive transcriptional regulators in the driver lines. The "Tet-Off" driver utilized the tetracycline-controlled transcriptional activator (tTA) that is unable to bind and activate transcription from tetracycline operators (TetO) in the presence of dox; the "Tet-on" driver utilized the reverse tTA (rtTA) that, conversely, binds and activates TetO operators in the presence of dox. The responder lines carried insertions encompassing a LacZ reporter gene, cis-regulated by a TetO-P-element hybrid promoter. The progeny of crosses between driver and responder lines expressed beta-galactosidase under dual, tissue-specific and dox-mediated regulation. In adult rtTA/TetOPlacZ progeny, dox treatment rapidly induced beta-galactosidase activity throughout the midgut epithelium and especially in malaria parasite-invaded epithelial cells. Transactivator-dependent, dox-mediated regulation was observed in hemocytes and pericardial cells using both systems. Conditional tissue-specific regulation is a powerful tool for analyzing gene function in mosquitoes and potentially for development of strategies to control disease transmission.

Copyright 2004 Genetics Society of America

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk