Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Oecologia. 2005 Jan;142(1):57-69. Epub 2004 Aug 31.

Temporal variability in (13)C of respired CO(2) in a pine and a hardwood forest subject to similar climatic conditions.

Author information

  • 1Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320, USA. mortazavi@ocean.fsu.edu


Temporal variability in the (13)C of foliage (delta(13)C(F)), soil (delta(13)C(S)) and ecosystem (delta(13)C(R)) respired CO(2) was contrasted between a 17.2-m tall evenly aged loblolly pine forest and a 35-m tall unevenly aged mature second growth mixed broadleaf deciduous forest in North Carolina, USA, over a 2-year period. The two forests are located at the Duke Forest within a kilometer of each other and are subject to identical climate and have similar soil types. The delta(13)C(F), collected just prior to dawn, was primarily controlled by the time-lagged vapor pressure deficit (VPD) in both stands; it was used for calculating the ratio of intercellular to ambient CO(2) ( Ci/ Ca). A remarkable similarity was observed in the relationship between Ci/ Ca and time-lagged VPD in these two forests despite large differences in hydraulic characteristics. This similarity emerged as a result of physiological adjustments that compensated for differences in plant hydraulic characteristics, as predicted by a recently proposed equilibrium hypothesis, and has implications to ecophysiological models. We found that in the broadleaf forest, the delta(13)C of forest floor CO(2) efflux dominated the delta(13)C(R), while in the younger pine forest, the delta(13)C of foliage respired CO(2) dominated delta(13)C(R). This dependence resulted in a more variable delta(13)C(R) in the pine forest when compared to the broadleaf forest due to the larger photosynthetic contribution. Given the sensitivity of the atmospheric inversion models to delta(13)C(R), the results demonstrate that these models could be improved by accounting for stand characteristics, in addition to previously recognized effects of moisture availability, when estimating delta(13)C(R).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk