Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 1992 May 15;69(4):581-95.

The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum.

Author information

  • 1Department of Cell and Developmental Biology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110.


Mice homozygous for null alleles of the putative signaling molecule Wnt-1 have a reproducible phenotype: loss of the midbrain and adjacent cerebellar component of the metencephalon. By examining embryonic expression of the mouse engrailed (En) genes, from 8.0 to 9.5 days postcoitum, we demonstrate that Wnt-1 primarily regulates midbrain development. The midbrain itself is required for normal development of the metencephalon. Thus, the observed neonatal phenotype is explained by a series of early events, within 48 hr of neural plate induction, that leads to a complete loss of En domains in the anterior central nervous system. Wnt-1 and a related gene, Wnt-3a, are coexpressed from early somite stages in dorsal aspects of the myelencephalon and spinal cord. We suggest that functional redundancy between these two genes accounts for the lack of a caudal central nervous system phenotype.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk