Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pain. 2004 Sep;111(1-2):116-24.

Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain.

Author information

  • 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.

Abstract

Reactive oxygen species (ROS) are free radicals produced in biological systems that are involved in various degenerative brain diseases. The present study tests the hypothesis that ROS also play an important role in neuropathic pain. In the rat spinal nerve ligation (SNL) model of neuropathic pain, mechanical allodynia develops fully 3 days after nerve ligation and persists for many weeks. Systemic injection of a ROS scavenger, phenyl-N-tert-butylnitrone (PBN), relieves SNL-induced mechanical allodynia in a dose-dependent manner. Repeated injections cause no development of tolerance or no loss of potency. Preemptive treatment with PBN is also effective in preventing full development of neuropathic pain behavior. Systemic injection was mimicked by intrathecal injection with a little less efficacy, while intracerebroventricular administration produced a much smaller effect. These data suggest that PBN exerts its anti-allodynic action mainly by spinal mechanisms. Systemic treatment with other spin-trap reagents, 5,5-dimethylpyrroline-N-oxide and nitrosobenzene, showed similar analgesic effects, suggesting that ROS are critically involved in the development and maintenance of neuropathic pain. Thus this study suggests that systemic administration of non-toxic doses of free radical scavengers could be useful for treatment of neuropathic pain.

PMID:
15327815
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk