A single autosomal gene defect severely limits IgG but not IgM responses in B lymphocyte-deficient A/WySnJ mice

Eur J Immunol. 1992 Feb;22(2):373-9. doi: 10.1002/eji.1830220213.

Abstract

Antigen-stimulated B lymphocytes either differentiate into IgM-secreting plasma cells or into memory B cells that secrete other immunoglobulin isotypes upon antigen restimulation. The mechanisms that generate and maintain memory B cells are poorly understood. Previously, we described a severe B lymphocyte deficiency in adult strain A/WySnJ mice compared to subline A/J. Here we show that the single, autosomal co-dominant locus responsible for the deficiency also diminishes IgG-secreting B cell formation without interfering with IgM-secreting plasma cell differentiation. A/WySnJ secondary IgG1 responses to the protein antigens hemocyanin, bovine gamma-globulin, ovalbumin, lysozyme and beta-galactosidase were 6- to 50-fold lower than A/J responses. The defect also decreased secondary IgG2a and IgG3 responses, and primary IgG1 and IgG2a responses. The reduced A/WySnJ secondary IgG1 response was not due to differential response kinetics or dose responsiveness, and could not be augmented to A/J levels by repeated immunizations. Serum IgG1, IgG2a and IgG3 levels from nonimmune A/WySnJ mice were similarly reduced. The secondary IgG1 response and splenic B cell percentage showed significant positive correlation (r = 0.72) in F2 mice, suggesting that a single locus controlled both traits. In contrast, A/WySnJ mice made good primary IgM responses to hemocyanin, beta-galactosidase, and the thymus-independent antigen trinitrophenyl-Ficoll. The A/WySnJ splenic adherent cells were competent in antigen-presenting function, and A/WySnJ immune T cells proliferated in response to antigen and provided the requisite B cell stimulatory signals for an IgG1 response. Together, our results suggest that A/WySnJ mice have a genetic lesion that causes a selective IgG immune response dysfunction. The absence of IgG-secreting cell precursors or a defect in precursor activation or differentiation are two possible mechanisms which could precipitate a selective IgG response dysfunction. We propose that the defective A/WySnJ and normal A/J strain pair offer the opportunity to use a natural genetic variation as a tool to investigate B lymphocyte development and function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibody Formation*
  • Antigen-Presenting Cells / immunology
  • B-Lymphocytes / cytology
  • B-Lymphocytes / immunology*
  • Immunoglobulin G / biosynthesis*
  • Immunoglobulin M / biosynthesis*
  • Immunologic Deficiency Syndromes / genetics*
  • Immunologic Deficiency Syndromes / immunology
  • Immunologic Memory
  • Lymphocyte Cooperation
  • Mice
  • Mice, Mutant Strains
  • T-Lymphocytes / immunology
  • T-Lymphocytes, Helper-Inducer / immunology

Substances

  • Immunoglobulin G
  • Immunoglobulin M