Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2004 Sep 3;342(1):247-60.

Stability and folding mechanism of mesophilic, thermophilic and hyperthermophilic archael histones: the importance of folding intermediates.

Author information

  • 1School of Molecular Biosciences, Washington State University, Pullman 99164-4660, USA.


The equilibrium stabilities to guanidinium chloride (GdmCl)-induced denaturation and kinetic folding mechanisms have been characterized for three archael histones: hFoB from the mesophile Methanobacterium formicicum; hMfB from the thermophile Methanothermus fervidus; and hPyA1 from the hyperthermophile Pyrococcus strain GB-3a. These histones are homodimers of 67 to 69 residues per monomer. The equilibrium unfolding transitions, as measured by far-UV circular dichroism (CD) are highly reversible, two-state processes. The mesophilic hFoB is very unstable and requires approximately 1 M trimethyl-amine-N-oxide (TMAO) to completely populate the native state. The thermophilic histones are more stable, with deltaG degrees (H2O) values of 14 and 16 kcal mol(-1) for hMfB and hPyA1, respectively. The kinetic folding of hFoB and hPyA1 are two-state processes, with no detectable transient kinetic intermediates. For hMfB, there is significant development of CD signal in the stopped-flow dead time, indicative of the formation of a monomeric intermediate, which then folds/associates in a single, second-order step to form the native dimer. While the equilibrium stability to chemical denaturation correlates very well with host growth temperature, there is no simple relationship between folding rates and stability for the archael histones. In the absence of denaturant, the log of the unfolding rates correlate with equilibrium stability. The folding/association of the moderately stable hMfB is the most rapid, with a rate constant in the absence of GdmCl of 3 x 10(6) M(-1) s(-1), compared to 9 x 10(5) M(-1) s(-1) for the more stable hPyA1. It appears that the formation of the hMfB burst-phase monomeric ensemble serves to enhance folding efficiency, rather than act as a kinetic trap. The folding mechanism of the archael histones is compared to the folding of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers (ISSADD), including the eukaryotic heterodimeric histones, which fold more rapidly. The importance of monomeric and dimeric kinetic intermediates in accelerating ISSADD folding reactions is discussed.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk