Display Settings:

Format

Send to:

Choose Destination
Biochem J. 1992 Jan 15;281 ( Pt 2):437-42.

Effect of interferon-gamma on complement gene expression in different cell types.

Author information

  • 1Department of Pathology, Western Infirmary, Glasgow, U.K.

Abstract

We have studied the expression of the complement components C2, C3, factor B, C1 inhibitor (C1-inh), C4-binding protein (C4-bp) and factor H in human peripheral blood monocytes, skin fibroblasts, umbilical vein endothelial cells (HUVEC) and the human hepatoma cell line G2 (Hep G2) in the absence and the presence of interferon-gamma (IFN-gamma). E.l.i.s.a. performed on culture fluids, run-on transcription assays, Northern blot and double-dilution dot-blot techniques confirmed that monocytes expressed all six components, whereas fibroblasts, HUVEC and HepG2 each expressed five of the six components. Fibroblasts and HUVEC did not synthesize C4-bp, and Hep G2 did not produce factor H. In addition to these differences, the synthesis rates of C3, C1-inh and factor H were not the same in all cell types. However, the synthesis rates of C2 and factor B were similar in all four cell types. The half-lives of the mRNAs were shorter in monocytes than in other cell types. Monocyte factor H mRNA had a half-life of 12 min in monocytes, compared with over 3 h in fibroblasts and HUVEC. The instability of factor H mRNA in monocytes may contribute to their low factor H secretion rate. IFN-gamma produced dose-dependent stimulation of C2, factor B, C1-inh, C4-bp and factor H synthesis by all cell types expressing these proteins, but decreased C3 synthesis in all four cell types. Cell-specific differences in the response to IFN-gamma were observed. The increased rates of transcription of the C1-inh and factor H genes in HUVEC were greater than in other cell types, while the increased rate of transcription of the C2, factor B and C1-inh genes in Hep G2 cells was less than in other cell types. IFN-gamma did not affect the stability of C3, factor H or C4 bp mRNAs, but increased the stability of factor B and C1-inh mRNAs and decreased the stability of C2 mRNA. Although these changes occurred in all four cell types studied, the half-life of C1-inh mRNA in monocytes was increased almost 4-fold, whereas the increases in the other cell types were less than 30%. These data show that the constitutive synthesis rates of complement components may vary in the different cell types. They also show that the degree of change in synthesis rates in response to IFN-gamma in each of the cell types often varies due to differences in transcriptional response, sometimes in association with changes in mRNA stability.

PMID:
1531292
[PubMed - indexed for MEDLINE]
PMCID:
PMC1130704
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk